Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(4): 10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573620

RESUMO

Purpose: In a previous study, we documented that the Intravitreal injections (IVIs) of bevacizumab in rats caused a retinal inflammatory response. We now study whether the IVI of other humanized anti-VEGF: ranibizumab and aflibercept also cause an inflammatory reaction in the rat retina and if it depends on the dose administered. Finally, we study whether this reaction affects retinal ganglion cell (RGC) survival. Methods: Albino Sprague-Dawley rats received a single IVI of 5 µL of PBS or ranibizumab or aflibercept at the concentration used in clinical practice (10 µg/µL or 40 µg/µL) or at a lower concentration (0.38 µg/µL and 1.5 µg/µL) calculated to obtain within the rat eye the same concentration as in the human eye in clinical practice. Others received a single 5 µL IVI of a polyclonal goat anti-rat VEGF (0.015 µg/µL) or of vehicle (PBS). Animals were processed 7 days or 1 month later. Retinal whole mounts were immunolabeled for the detection of microglial, macroglial, RGCs, and intrinsically photosensitive RGCs (ipRGCs). Fluorescence and confocal microscopy were used to examine retinal changes, and RGCs and ipRGCs were quantified automatically or semiautomatically, respectively. Results: All the injected substances including the PBS induced detectable side effects, namely, retinal microglial cell activation and retinal astrocyte hypertrophy. However, there was a greater microglial and macroglial response when the higher concentrations of ranibizumab and aflibercept were injected than when PBS, the antibody anti-rat VEGF and the lower concentrations of ranibizumab or aflibercept were injected. The higher concentration of ranibizumab and aflibercept resulted also in significant RGC death, but did not cause appreciable ipRGC death. Conclusions: The IVI of all the substances had some retinal inflammatory effects. The IVI of humanized anti-VEGF to rats at high doses cause important side effects: severe inflammation and RGC death, but not ipRGC death.


Assuntos
Fatores de Crescimento Endotelial , Células Ganglionares da Retina , Humanos , Ratos , Animais , Injeções Intravítreas , Ranibizumab/toxicidade , Fator A de Crescimento do Endotélio Vascular , Ratos Sprague-Dawley , Cabras , Neuroglia
2.
Aging Dis ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502581

RESUMO

This study aims to investigate two key aspects in a mouse model of ocular hypertension (OHT): first, the time course of retinal ganglion cell (RGC) death and the parallel activation of caspase-3 (a-Casp3+ cells) to narrow the therapeutic window; and second, the effect of caspase-3 and microglia inhibition by minocycline on RGC rescue in this model. RGC loss after OHT induction was significant at day 7 and progressed to 30 days. However, anatomical RGC death was preceded by significant Casp3 activation on day 3. Microglial inhibition by minocycline did not alter the course of OHT or rescue RGCs but resulted in a decrease in a-Casp3+ cells and phagocytic and total microglia. Therefore, RGC death commitment occurs earlier than their loss of Brn3a expression, microglial cells do not exacerbate RGC loss, and while this death is primarily apoptotic, apoptosis inhibition does not rescue RGCs, suggesting that alternative death pathways play a role in glaucomatous injury.

3.
Front Immunol ; 15: 1340013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384465

RESUMO

Background: Neurological dysfunction and glial activation are common in severe infections such as sepsis. There is a sexual dimorphism in the response to systemic inflammation in both patients and animal models, but there are few comparative studies. Here, we investigate the effect of systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) on the retina of male and female mice and determine whether antagonism of the NLRP3 inflammasome and the extrinsic pathway of apoptosis have protective effects on the retina. Methods: A single intraperitoneal injection of LPS (5 mg/kg) was administered to two months old C57BL/6J male and female mice. Retinas were examined longitudinally in vivo using electroretinography and spectral domain optical coherence tomography. Retinal ganglion cell (RGC) survival and microglial activation were analysed in flat-mounts. Retinal extracts were used for flow cytometric analysis of CD45 and CD11b positive cells. Matched plasma and retinal levels of proinflammatory cytokines were measured by ELISA. Retinal function and RGC survival were assessed in animals treated with P2X7R and TNFR1 antagonists alone or in combination. Results: In LPS-treated animals of both sexes, there was transient retinal dysfunction, loss of vision-forming but not non-vision forming RGCs, retinal swelling, microglial activation, cell infiltration, and increases in TNF and IL-1ß. Compared to females, males showed higher vision-forming RGC death, slower functional recovery, and overexpression of lymphotoxin alpha in their retinas. P2X7R and TNFR1 antagonism, alone or in combination, rescued vision-forming RGCs. P2X7R antagonism also rescued retinal function. Response to treatment was better in females than in males. Conclusions: Systemic LPS has neuronal and sex-specific adverse effects in the mouse retina, which are counteracted by targeting the NLRP3 inflammasome and the extrinsic pathway of apoptosis. Our results highlight the need to analyse males and females in preclinical studies of inflammatory diseases affecting the central nervous system.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina/metabolismo , Inflamação/metabolismo
4.
Front Neuroanat ; 18: 1335176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415017

RESUMO

Purpose: The aim of this study was to investigate, the neuroprotective effects of a new Gramine derivative named: ITH12657, in a model of retinal excitotoxicity induced by intravitreal injection of NMDA. Methods: Adult Sprague Dawley rats received an intravitreal injection of 100 mM NMDA in their left eye and were treated daily with subcutaneous injections of ITH12657 or vehicle. The best dose-response, therapeutic window study, and optimal treatment duration of ITH12657 were studied. Based on the best survival of Brn3a + RGCs obtained from the above-mentioned studies, the protective effects of ITH12657 were studied in vivo (retinal thickness and full-field Electroretinography), and ex vivo by quantifying the surviving population of Brn3a + RGCs, αRGCs and their subtypes α-ONsRGCs, α-ONtRGCs, and α-OFFRGCs. Results: Administration of 10 mg/kg ITH12657, starting 12 h before NMDA injection and dispensed for 3 days, resulted in the best significant protection of Brn3a + RGCs against NMDA-induced excitotoxicity. In vivo, ITH12657-treated rats showed significant preservation of retinal thickness and functional protection against NMDA-induced retinal excitotoxicity. Ex vivo results showed that ITH12657 afforded a significant protection against NMDA-induced excitotoxicity for the populations of Brn3a + RGC, αRGC, and αONs-RGC, but not for the population of αOFF-RGC, while the population of α-ONtRGC was fully resistant to NMDA-induced excitotoxicity. Conclusion: Subcutaneous administration of ITH12657 at 10 mg/kg, initiated 12 h before NMDA-induced retinal injury and continued for 3 days, resulted in the best protection of Brn3a + RGCs, αRGC, and αONs-RGC against excitotoxicity-induced RGC death. The population of αOFF-RGCs was extremely sensitive while α-ONtRGCs were fully resistant to NMDA-induced excitotoxicity.

5.
Exp Eye Res ; 235: 109627, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619829

RESUMO

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Assuntos
Traumatismos do Nervo Óptico , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/farmacologia , Células Ganglionares da Retina/metabolismo , Gliose/metabolismo , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Nervo Óptico/metabolismo , Compressão Nervosa/métodos
6.
Methods Mol Biol ; 2708: 175-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558971

RESUMO

The identification of distinct retinal ganglion cell (RGC) populations in flat-mounted retinas is key to investigating pathological or pharmacological effects in these cells. In this chapter, we review the main techniques for detecting the total population of RGCs and various of their subtypes in whole-mounted retinas of pigmented and albino rats and mice, four of the animal strains most studied by the scientific community in the retina field. These methods are based on the studies published by the Vidal-Sanz's laboratory.


Assuntos
Retina , Células Ganglionares da Retina , Ratos , Camundongos , Animais , Células Ganglionares da Retina/patologia , Retina/patologia
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834893

RESUMO

Retinal organotypic cultures (ROCs) are used as an in vivo surrogate to study retinal ganglion cell (RGC) loss and neuroprotection. In vivo, the gold standard to study RGC degeneration and neuroprotection is optic nerve lesion. We propose here to compare the course of RGC death and glial activation between both models. The left optic nerve of C57BL/6 male mice was crushed, and retinas analyzed from 1 to 9 days after the injury. ROCs were analyzed at the same time points. As a control, intact retinas were used. Retinas were studied anatomically to assess RGC survival, microglial, and macroglial activation. Macroglial and microglial cells showed different morphological activation between models and were activated earlier in ROCs. Furthermore, microglial cell density in the ganglion cell layer was always lower in ROCs than in vivo. RGC loss after axotomy and in vitro followed the same trend up to 5 days. Thereafter, there was an abrupt decrease in viable RGCs in ROCs. However, RGC somas were still immuno-identified by several molecular markers. ROCs are useful for proof-of-concept studies on neuroprotection, but long-term experiments should be carried out in vivo. Importantly, the differential glial activation observed between models and the concomitant death of photoreceptors that occurs in vitro may alter the efficacy of RGC neuroprotective therapies when tested in in vivo models of optic nerve injury.


Assuntos
Sistemas Microfisiológicos , Traumatismos do Nervo Óptico , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Axotomia , Sobrevivência Celular
8.
Zool Res ; 44(1): 226-248, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594396

RESUMO

Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRß, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRß in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRß were not suitable markers of viability.


Assuntos
Traumatismos do Nervo Óptico , Ratos , Camundongos , Animais , Células Ganglionares da Retina , Macaca mulatta , Traumatismos do Nervo Óptico/veterinária , Retina , Mamíferos , Biomarcadores
9.
Front Neuroanat ; 16: 1054849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530520

RESUMO

Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina. Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation. Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region. Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.

10.
Redox Biol ; 57: 102506, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270186

RESUMO

The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.

11.
Front Neuroanat ; 16: 994890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213609

RESUMO

Albino and pigmented rat strains are widely used in models to study retinal degeneration and to test new therapies. Here, we have summarized the main topographical and functional characteristics of the rat retina focussing on photoreceptors and retinal ganglion cells (RGCs), the beginning and end of the retinal circuitry, respectively. These neurons are very sensitive to injury and disease, and thus knowing their normal number, topography, and function is essential to accurately investigate on neuronal survival and protection.

12.
Stem Cell Res Ther ; 13(1): 430, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987845

RESUMO

BACKGROUND: Advanced therapies using adult mesenchymal stromal cells (MSCs) for neurodegenerative diseases are not effectively translated into the clinic. The cross talk between the transplanted cells and the host tissue is something that, despite its importance, is not being systematically investigated. METHODS: We have compared the response of the mouse healthy retina to the intravitreal transplantation of MSCs derived from the bone marrow in four modalities: syngeneic, allogeneic, xenogeneic and allogeneic with immunosuppression using functional analysis in vivo and histology, cytometry and protein measurement post-mortem. Data were considered significant (p < 0.05) after nonparametric suitable statistical tests. RESULTS: Transplanted cells remain in the vitreous and are cleared by microglial cells a process that is quicker in allotransplants regardless of immunosuppression. All transplants cause anatomical remodelling which is more severe after xenotransplants. Xeno- and allotransplants with or without immunosuppression cause macro- and microglial activation and retinal functional impairment, being xenotransplants the most detrimental and the only ones that recruit CD45+Iba1-cells. The profile of proinflammatory cytokines changes in all transplantation settings. However, none of these changes affect the retinal ganglion cell population. CONCLUSIONS: We show here a specific functional and anatomical retinal response depending on the MSC transplantation modality, an aspect that should be taken into consideration when conducting preclinical studies if we intend a more realistic translation into clinical practice.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Retina/patologia , Células Ganglionares da Retina/patologia
13.
Acta Ophthalmol ; 100(6): e1313-e1331, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35514078

RESUMO

PURPOSE: To study and compare effects of syngeneic bone marrow mononuclear stem cells (BM-MNCs) transplants on inherited retinal degeneration in two animal models with different etiologies: the RCS and the P23H-1 rats. To compare the safety and efficacy of two methods of intraocular delivery: subretinal and/or intravitreal. METHODS: A suspension of BM-MNCs was injected subretinally or intravitreally in the left eyes of P23H-1 and RCS rats at post-natal day (P) 21. At different survival intervals after the injection: 7, 15, 30 or 60 days, the retinas were cross-sectioned, and photoreceptor survival and glial cell responses were investigated using immunodetection of cones (anti-cone arrestin), synaptic connections (anti-bassoon), microglia (anti-Iba-1), astrocytes and Müller cells (anti-GFAP). Electroretinographic function was also assessed longitudinally. RESULTS: Intravitreal injections (IVIs) or subretinal injections (SRIs) of BM-MNCs did not produce adverse effects. The transplanted cells survived for up to 15 days but did not penetrate the retina. Both IVIs and SRIs increased photoreceptor survival, decreased synaptic degeneration and glial fibrillary acidic protein (GFAP) expression in Müller cells but did not modify microglial cell activation and migration or the electroretinographic responses. CONCLUSIONS: Intravitreal and subretinal syngeneic BM-MNCs transplantation decreases photoreceptor degeneration and shows anti-gliotic effects on Müller cells but does not ameliorate retinal function. Moreover, syngeneic BM-MNCs transplants are more effective than the xenotransplants of these cells. BM-MNC transplantation has potential therapeutic effects that merit further investigation.


Assuntos
Degeneração Retiniana , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Ratos , Retina/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia , Transplante de Células-Tronco
14.
J Control Release ; 343: 469-481, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131370

RESUMO

Retinal ganglion cell (RGC) loss underlies several conditions which give rise to significant visual compromise, including glaucoma and ischaemic optic neuropathies. Neuroprotection of RGCs is a clinical well-defined unmet need in these diseases, and adenosine A3 receptor (A3R) activation emerges as a therapeutic pharmacological approach to protect RGCs. A porous biodegradable intraocular implant loaded with 2-Cl-IB-MECA (selective A3R agonist) was used as a strategy to protect RGCs. Drug-loaded PCL implants released 2-Cl-IB-MECA for an extended period and the released 2-Cl-IB-MECA limited glutamate-evoked calcium (Ca2+) rise in RGCs. Retinal thinning due to transient ischemia was not prevented by 2-Cl-IB-MECA-PCL implant. However, 2-Cl-IB-MECA-PCL implants decreased retinal cell death, promoted the survival of RGCs, preserved optic nerve structure and anterograde axonal transport. We further demonstrated that 2-Cl-IB-MECA-loaded PCL implants were able to enhance RGC function that was compromised by transient ischemia. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA released from the PCL implant, this can be envisaged a good therapeutic strategy to protect RGCs.


Assuntos
Agonistas do Receptor A3 de Adenosina , Células Ganglionares da Retina , Agonistas do Receptor A3 de Adenosina/farmacologia , Humanos , Isquemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Retina/metabolismo
15.
Neural Regen Res ; 17(9): 1937-1944, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142670

RESUMO

Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.

16.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769247

RESUMO

To analyze the neuroprotective effects of 7,8-Dihydroxyflavone (DHF) in vivo and ex vivo, adult albino Sprague-Dawley rats were given a left intraorbital optic nerve transection (IONT) and were divided in two groups: One was treated daily with intraperitoneal (ip) DHF (5 mg/kg) (n = 24) and the other (n = 18) received ip vehicle (1% DMSO in 0.9% NaCl) from one day before IONT until processing. At 5, 7, 10, 12, 14, and 21 days (d) after IONT, full field electroretinograms (ERG) were recorded from both experimental and one additional naïve-control group (n = 6). Treated rats were analyzed 7 (n = 14), 14 (n = 14) or 21 d (n = 14) after IONT, and the retinas immune stained against Brn3a, Osteopontin (OPN) and the T-box transcription factor T-brain 2 (Tbr2) to identify surviving retinal ganglion cells (RGCs) (Brn3a+), α-like (OPN+), α-OFF like (OPN+Brn3a+) or M4-like/α-ON sustained RGCs (OPN+Tbr+). Naïve and right treated retinas showed normal ERG recordings. Left vehicle-treated retinas showed decreased amplitudes of the scotopic threshold response (pSTR) (as early as 5 d), the rod b-wave, the mixed response and the cone response (as early as 10 d), which did not recover with time. In these retinas, by day 7 the total numbers of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs decreased to less than one half and OPN+Brn3a+RGCs decreased to approximately 0.5%, and Brn3a+RGCs showed a progressive loss with time, while OPN+RGCs and OPN+Tbr2+RGCs did not diminish after seven days. Compared to vehicle-treated, the left DHF-treated retinas showed significantly greater amplitudes of the pSTR, normal b-wave values and significantly greater numbers of OPN+RGCs and OPN+Tbr2+RGCs for up to 14 d and of Brn3a+RGCs for up to 21 days. DHF affords significant rescue of Brn3a+RGCs, OPN+RGCs and OPN+Tbr2+RGCs, but not OPN+Brn3a+RGCs, and preserves functional ERG responses after IONT.


Assuntos
Flavonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos do Nervo Óptico , Nervo Óptico , Células Ganglionares da Retina , Animais , Eletrorretinografia , Feminino , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
17.
Life (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34833013

RESUMO

Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.

18.
Front Cell Dev Biol ; 9: 772223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805178

RESUMO

Mesenchymal stromal cell (MSC) therapy to treat neurodegenerative diseases has not been as successful as expected in some preclinical studies. Because preclinical research is so diverse, it is difficult to know whether the therapeutic outcome is due to the cell type, the type of transplant or the model of disease. Our aim here was to analyze the effect of the type of transplant on neuroprotection and axonal regeneration, so we tested MSCs from the same niche in the same model of neurodegeneration in the three transplantation settings: xenogeneic, syngeneic and allogeneic. For this, bone marrow mesenchymal stromal cells (BM-MSCs) isolated from healthy human volunteers or C57/BL6 mice were injected into the vitreous body of C57/BL6 mice (xenograft and syngraft) or BALB/c mice (allograft) right after optic nerve axotomy. As controls, vehicle matched groups were done. Retinal anatomy and function were analyzed in vivo by optical coherence tomography and electroretinogram, respectively. Survival of vision forming (Brn3a+) and non-vision forming (melanopsin+) retinal ganglion cells (RGCs) was assessed at 3, 5 and 90 days after the lesion. Regenerative axons were visualized by cholera toxin ß anterograde transport. Our data show that grafted BM-MSCs did not integrate in the retina but formed a mesh on top of the ganglion cell layer. The xenotransplant caused retinal edema, detachment and folding, and a significant decrease of functionality compared to the murine transplants. RGC survival and axonal regeneration were significantly higher in the syngrafted retinas than in the other two groups or vehicle controls. Melanopsin+RGCs, but not Brn3a+RGCs, were also neuroprotected by the xenograft. In conclusion, the type of transplant has an impact on the therapeutic effect of BM-MSCs affecting not only neuronal survival but also the host tissue response. Our data indicate that syngrafts may be more beneficial than allografts and, interestingly, that the type of neuron that is rescued also plays a significant role in the successfulness of the cell therapy.

19.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639236

RESUMO

We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). METHODS: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). RESULTS: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. CONCLUSIONS: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Axotomia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo
20.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575905

RESUMO

BACKGROUND: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. METHODS: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. RESULTS: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14-30 d their morphology was fully branched. CONCLUSION: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area.


Assuntos
Luz , Retina/patologia , Retina/efeitos da radiação , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos da radiação , Ratos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Fatores de Tempo , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...